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Abstract

In this paper, a novel formulation for the short-term scheduling of multiproduct batch plants under demand uncertainty is presented.
Then it is solved by an improved genetic algorithm. The proposed approach results in an efficient utilization of the plant capability as it
allows the optimal selection among all the rescheduling alternatives in a systematic way without the use of any heuristics. Moreover, the
objective function can not only maximize the total profit of the plant and minimize the makespan but also allow the flexibility for mod-
eling different weighted instances of the two targets so that a best-possible decision can be determined. According to the discrete char-
acteristic of scheduling of batch plants, through the improvement of the coding method, an effective genetic algorithm is presented. Two
examples are given to illustrate the effectiveness of the proposed formulation and algorithm.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.

Keywords: Scheduling; Batch plants; Demand; Uncertainty

1. Introduction

Batch plants have been widely practiced since long
before the development of the modern chemical industry
[1,2]. The effective scheduling for batch plants can not only
increase the customer services and reduce the need for
excess capacities of corporations but also provide the
potential of identifying key data and mechanistic under-
standings of processes. So, it is significant to do further
research on scheduling for batch plants.

Most of the work in this area has been limited to deter-
ministic approaches, wherein the problem parameters are
assumed to be known with certainty. However, various
uncertain effects are inevitable in reality [3], such as pro-
cessing time, costs and demand. Failure to properly

account for product demand fluctuations may lead to
unsatisfied customer demands, loss of market share, and
excessive inventory costs. Recently, the scheduling of batch
plants under demand uncertainty has emerged as an area of
active research.

Sand et al. [4] proposed an algorithm to approximate
the performance of an ideal online scheduler for a multi-
product batch plant under demand uncertainty. They used
a two-level hierarchical framework which consisted of a
stochastic linear program for the purpose of long-term
planning and a deterministic nonlinear model for short-
term scheduling. Gupta et al. [5] used a chance-con-
strained approach in conjunction with a two-stage
stochastic programming model to analyze the trade-offs
between demand satisfaction and production costs for a
mid-term supply chain planning problem. Vin and Iera-
petritou [6] addressed the problem of quantifying schedule
robustness under demand uncertainty. They used multipe-
riod programming to obtain schedules that were feasible
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over an entire range of parameters, and also proposed
robustness metrics based on deviations from the determin-
istic schedule. Engell et al. [7] reported an application of a
scenario-decomposition algorithm, along with some prob-
lem-dependent preprocessing procedures, and provided
very good computational results for the solution of a
two-stage stochastic scheduling model for a polymer plant
under demand uncertainty. Although stochastic models
optimize the total expected performance measure, they
do not provide any control on their variability over differ-
ent scenarios. Therefore, the application of fuzzy set the-
ory to solve the multistage scheduling is proposed [8].

Scheduling of batch plants is one of the most difficult
problems, as it is classified as an NP-complete one. In gen-
eral, it is difficult to solve the model by some exact mathe-
matical methods such as mixed integer linear programming
(MILP) methods or branch and bound (B&B) methods
when the size of the problem is too large [9]. So, a good
way is to use heuristic optimization algorithm to get the
near optimal solution. Genetic algorithm is one of the heu-
ristic optimization algorithms.

It was developed by Holland [10] in 1975, inspired by
simulation of natural choice process in biology evolution.
Davis [11] was the first one who applied GA to the sched-
uling problem. Compared to many traditional local search
heuristic methods, GA frequently has an advantage when
search spaces are multi-dimensional, discontinuous, or
highly constrained. A lot of reported work focused on
GA has been applied widely in the function optimization,
ANN training, pattern recognition, fuzzy control and some
other fields [12–15].

The aim of this work is to set up a novel model for the
short-term scheduling of multiproduct batch plants under
demand uncertainty and solve this model by an improved
genetic algorithm. The proposed formulation is based on
a continuous-time representation and results in a MILP
problem, which leads to a smaller number of binary and
continuous variables, thus resulting in reduced computa-
tional times. The objective function includes a term for
profit maximization and a penalty term that is used to min-
imize the deviations from the original schedule. According
to the discrete characteristic of the scheduling of batch
plants, an effective genetic algorithm is improved by a pro-
cedure-based coding method.

2. Scheduling model

The short-term scheduling of multiproduct batch plants
under demand uncertainty involves the constraints of
material balances and inventory constraints, as well as
the penalty for production shortfalls. Taking the above
constraints into consideration, a novel formulation is pro-
posed. Scheduling model was formulated as a MILP prob-
lem using the continuous-time domain representation.
Order cancellation can also be considered similar to rush
order arrival.

Notations are listed below:

Indices:

i = tasks; j = units; s = states; n = event points
Sets:

I = tasks; J = units; S = states; N = event points within
the horizon; Ij = tasks that can be processed in unit j;
Ji = units capable of processing task i; Is = tasks that
produce or consume state s;
Parameters:

H = time horizon; Hupper = upper bound on time hori-
zon; Ps = price of state s;
V min

j ; V max
j ¼ minimal and maximal capacity of the

specific unit j when processing task i;
SCs = storage capacity for state s;
Ted = time of arrival of an extra demand;
Ds = demand for state s at the end of the time horizon;
DDs = an additional number units of product at time Ted;
qc

is; q
p
is ¼ proportion of state s consumed and produced

by task i; respectively;
aij = constant term of processing time of task i in unit j;
bij = variable term of processing time of task i in unit j;
Variables:

yv(j,n) = binary variables that assign the utilization of
unit j at event point n;
y(i,n) = binary variables that beginning of task i at event
point n;
Ts(i,j,n) = time that task i starts in unit j at event point n;
Tf(i,j,n) = time that task i finishes in unit j while it starts
at event point n;
b(i,j,n) = amount of material undertaking task i in unit j

at event point n;
qt(s,n) = total quantity of state s produced at event
point n;
qs(s,n) = quantity of state s at event point n.

On the basis of this notation, the proposed mathemati-
cal model for the short-term scheduling of multiproduct
batch plants under demand uncertainty involves the fol-
lowing constraints:

Allocation constraints:
X

i2Ij

yði; nÞ ¼ yvðj; nÞ 8j 2 J ; n 2 N ð1Þ

Eq. (1) expresses that at each unit j and at an event point n

only one of the tasks that can be performed in this unit
should take place.

Capacity constraints:

V min
j � yði; nÞ 6 bði; j; nÞ 6 V max

j � yði; nÞ i 2 I ; j 2 J i; n 2 N

ð2Þ
Eq. (2) expresses the requirement for the minimum amount
V min

j of material in order for a unit j to start operating task i

and the maximum capacity of a unit V max
j when performing

task i.
Storage constraints:

qsðs; nÞ 6 SCs 8s 2 S; n 2 N ð3Þ
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Eq. (3) represents the maximum available storage capacity
for each state s at each event point n.

Material balances:

qsðs; nÞ ¼ qsðs; n� 1Þ � qtðs; nÞ þ
X

i2Is

qp
is

X

j2J i

bði; j; n� 1Þ

þ
X

i2Is

qc
is

X

j2J i

bði; j; nÞ ð4Þ

According to Eq. (4), the amount of material of state s at
event point n is equal to that at event point n � 1 adjusted
by any amounts produced or consumed between the event
points n � 1 and n and the amount required by the market
at event point n within the time horizon.

Demand constraints:
X

n2N

qtðs; nÞP Ds þ DDs 8s 2 S ð5Þ

Eq. (5) represents the requirement to produce at least as
much as required by the market.

Duration constraints:

T f ði; j; nÞ ¼ T sði; j; nÞ þ aij � yði; nÞ þ bij � bði; j; nÞ ð6Þ

The duration constraints express the dependence of the
time duration of task i at unit j at event point n on the
amount of material being processed.

Sequence constraints:

Sequence constraints provide the connections between
the starting and final times and the binary variables y(i,
n) and yv(i, n). The sequence constraints are classified into,

Same task in same unit

T sði; j; nþ 1ÞP T f ði; j; nÞ � H ½2� yði; nÞ � yvðj; nÞ� ð7Þ
T sði; j; nþ 1ÞP T sði; j; nÞ ð8Þ
T f ði; j; nþ 1ÞP T f ði; j; nÞ ð9Þ

Eqs. (7)–(9) state that task i starting at event point n + 1
should start after the end of the same task performed at
the same unit j, which has already started at event point n.

Different tasks in the same unit

T sði; j; nþ 1ÞP T f ði0; j; nÞ � H ½2� yði0; nÞ � yvðj; nÞ� ð10Þ

Eq. (10) equation establishes the relationship between the
starting time of task i at point n + 1 and the end time of task
i0 at event point n when these tasks take place at the same
unit.

Different tasks in different units

T sði; j; nþ 1ÞP T f ði0; j0; nÞ � H ½2� yði0; nÞ
� yvðj0; nÞ� ð11Þ

If task i0 takes place in unit j0 at event point n, then we have
Ts(i, j, n + 1) P Tf(i0, j0, n) and hence, task i in unit j has to
start after the end of task i0 in unit j0, otherwise the right hand
side becomes negative and the constraint is trivially satisfied.

Completion of previous tasks

T sði; j; nþ 1ÞP
X

n02N ;n06n

X

i02Ij

T f ði0; j; n0Þ � T sði0; j; n0Þ ð12Þ

In the above equation represents the requirement of task i

to start after the completion of all the tasks performed in
past event points at the same unit j.

Time horizon constraints:

T f ði; j; nÞ 6 H i 2 I ; j 2 J i; n 2 N ð13Þ
T sði; j; nÞ 6 H i 2 I ; j 2 J i; n 2 N ð14Þ

Eqs. (13) and (14) represent the requirement of every task i

to start and end within the time horizon H.
Objective:

In the case of rush order, the additional order may lead
to an infeasible problem if the time horizon is kept fixed to
the original time horizon because of plant capacity limita-
tions. In this case, the following objectives are considered:
(a) Maximize the total profit of the plant and/or maximize
the production of rush order product within the original
time horizon; (b) Minimize the makespan, i.e., find the
shortest time within which the additional order can be
delivered.

For case (a), an objective function of the following form
is used:

max
X

s

X

n

ps � priorityðsÞ � qtðs; nÞ � penalty

�
X

s

priority0ðsÞ � slackðsÞ ð15Þ

The first term in the objective function is used to maximize
the profit in the plant. A weighting parameter priority(s) is
used to effectively increase the price of a state s and thus
maximize the profit preferentially toward the product with
the rush order.

The second term is used to maximize the production of
the various states s. The factor priority0(s) is a weighting
factor that is used to maximize preferentially the produc-
tion of different states. The penalty term is used to scale
the second term in the objective function to be of the same
order of magnitude as the first term so that both terms
drive the optimization equally. The variable slack(s) is to
maintain feasibility under rush order arrival by relaxing
the demand constraint as follows:
X

n2N

qtðs; nÞP Ds þ DDs � slackðsÞ 8s 2 S ð16Þ

In the above function, through changes in the values of pri-

ority(s) and priority0(s), different objective functions can be
obtained that correspond to different weighted instances of
product and total plant profit maximization. This provides
the flexibility for the decision maker to analyze the effects
of the balance between the two objectives before making
a decision on which reschedule to implement.

For case (b), the objective function needs to be modified
to minimize H. In this case, the total time horizon H is
made a variable. Thus, it becomes necessary to incorporate
an additional constraint that will maintain the monotonic-
ity in the task starting times. This constraint takes the form

T sði; j; nÞP T ed½1� yði; nÞ�yði0; nÞ ð17Þ
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and enforces the requirement that, for all tasks that have
not yet started at the time of rush order arrival, their start-
ing time T s will be greater than Ted. Also, in order to avoid
the introduction of nonlinear terms, an upper bound on H

is used in all sequence constraints, and an additional con-
straint is added for variable H of the form H 6 Hupper.

3. Scheduling algorithm

GA is adopted for the scheduling of batch plants, and is
used as follows.

3.1. Coding method

Coding is an improved procedure-based method. Here,
scheduling results are coded in accordance with the
sequence of procedures, where the same symbol is
assigned to a particular procedure. Results are described
by the sequence in a special chromosome. For example,
one chromosome for 3 tasks, 3 units the scheduling
problem is [1312 21332], where ‘‘1” denotes part J1,
‘‘2” denotes part J2, and ‘‘3” denotes part J3. Three
‘‘2”s in the chromosome sequence denote three proce-
dures of part J2; the first ‘‘2” refers to the first procedure
of part J2, and others can be inferred in the same way.
Each individual part’s procedure sequence constraint
has been considered for this coding method, so there is
no dead loop for decoding [16].

3.2. Fit function

When the objective function is to maximize the total
profit, a scheduler decoding the information carried in
the composite chromosome is used to evaluate the fitness
of each chromosome. The fitness value is set to the inverse
of the maximum profit from the generated schedule. The
actual schedule is deduced through a simulation, which
analyzes the state of the waiting queues in front of the
machine and the preference lists, gene 1 to gene n from each
chromosome segment [17].

When the scheduling target is to minimize the makespan
for the work process, the fit function is designed as follows:

F ðX Þ ¼
Cmax � f ðX Þ; if ðCmax P f ðX ÞÞ
0; if ðCmax < f ðX ÞÞ

�

F 0 ¼ aF þ b a ¼ 1=ðF avg � F minÞb ¼ �F min=ðF avg � F minÞ
ð18Þ

In early stages, fitness value differences among individu-
als are large, and few individuals possess a high propor-
tion during the choosing process. This decreases the
diversity of a group. In the final stage, fitness values
among individuals may be very close, so it is easy to en-
act a random choosing process. Here, ‘‘a” and ‘‘b” are
used to adjust fitness values to avoid premature selection
in early stages, and to ensure a random selection process
in the final stage.

3.3. Choosing algorithm

A proportional model-based strategy is used,

P is ¼ F i

XM

i¼1

F i

,

ð19Þ

where Pis is the probability that an individual will be cho-
sen for the proportional model. The choosing error for the
proportional method is large because sometimes chromo-
somes with a high fitness value will not be selected. Thus,
the following steps should be followed to ensure that the
best chromosomes are selected [18]: (i) Determine the indi-
viduals with the highest and lowest fitness values; (ii) If the
fitness of the best individual in the last group is much high-
er than that of the best individual, then this individual will
be considered the best individual; (iii) If the fitness of the
best individual in the last group is much lower than that
of the best individual, then the best individual will be used
to replace the worst individual in the last group.

3.4. Crossover operator

A linear order crossover procedure is used [19]. First,
one couple of parent chromosomes is selected randomly;
then, one part is selected randomly, which has m opera-
tions corresponding to each parent chromosome, and
‘‘H” is used to replace operations for unselected parts in
the first parent chromosome, so a new chromosome is gen-
erated. Now, we turn k positions to the left or right, where
k is random, but the distance among the operations of the
selected parts must be kept stable. The operations of the
unselected parts in the second parent chromosome are used
to replace ‘‘H” in the first parent as the original relative
sequence. Thus, a new chromosome is generated. Similarly,
m operations corresponding to the selected parts in the sec-
ond parent chromosome and the operations corresponding
to the unselected parts in the first parent chromosome can
be used to generate another new chromosome.

3.5. Mutation algorithm

Mutation algorithm is for selecting one part randomly,
and a corresponding set of m operations are conducted ran-
domly, at the same time, the distance among them and the
relative sequence of other operations is kept stable.

4. Experimental results and analyses

In this section, we present some examples to illustrate
the performance of the proposed model and the improved
GA. All of the following scheduling problems are solved on
a 1.8 GHz, 512 MB AMD PC.

Example 1. Two different products are produced through
five processing stages: heating; reactions 1, 2, and 3; and
separation of product 2. The data for this example are
presented in Ref. [20].
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Example 2. Four products are produced through eight
tasks from three feeds. There are nine intermediates in
the system. In all, six different units are required for the
whole process. The STN representation and data are
shown in Ref. [21].

For Example 1, the deterministic schedule was solved to
maximize the total profit within a fixed time horizon of
8 h. The schedule is obtained for an order of 55 units of
P1 and 70 units of P2. Similarly, for Example 2, the deter-
ministic schedule was determined to give the minimum de-
mand of 520 units of P1, 1215 units of P2, 290 units of P3,
and 1350 units of P4. The corresponding schedule is shown
in Fig. 1.

A rush order of 60 additional units of P1 that arrives at
time Trush = 2 h is considered for Example 1. An objective
function of maximizing the total profit is considered. Val-
ues of priority(s) = 0 for all states, priority0(s) = 1 for P1
and 0 for all other states, and penalty = 1 are considered.
In this case, the objective function corresponds to the max-
imization of the production of P1 only. The results for opti-
mal scheduling are reported in Fig. 2.

It is found that, within the fixed time horizon of 8 h, the
maximum production of P1 is only 84 units, which corre-
sponds to only part of the total order of 115 units,

slack(P1) = 31 units. It means that the problem is infeasi-
ble. It means it is impossible to fulfill the rush order on
P1 within the fixed time horizon of 8 h. Thus, consider
an alternative objective function to determine the minimum
makespan by which the additional order can be delivered.

Investigation on the effects of rush order arrival time on
the makespan was carried out. For Example 1, the make-
span for the deterministic schedule is 7.53 h. Scheduling
under demand uncertainty is carried out to support an
additional order of 30 units of P1 and an additional order
of 30 units of P2. A similar study is performed for Example
2. The makespan for the deterministic schedule is 4.48 h.
Uncertain scheduling is performed to handle a rush order
of 200 additional units of P3. Results in Fig. 3 shows that
the proposed model predicts a nonuniform increase in the
minimum makespan depending on the time the rush order
arrives. When the rush order arrives before 4 h, the make-
span does not change significantly. This is a result of the
inherent flexibility of the plant in terms of the capability
of a task to be performed on more than one unit. When
the rush order arrives between 4 and 6 h, then it is possible
that one additional batch of some intermediate would add
constant processing time or set up time to the makespan,
thus causing the jump. P1, P2, and P3 are produced in
the same campaign, which is the reason that similar trends

Fig. 1. Gantt charts of deterministic scheduling for Examples 1 and 2.

Fig. 2. Gantt chart of scheduling under demand uncertainty for
Example 1.

Fig. 3. Effect of rush order arrival time on makespan for Examples 1
and 2.
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are observed. Fig. 4 shows the Gantt chart of optimizing
the makespan for Example 2.

An important issue in the determination of the optimal
schedule after a rush order arrives is the balancing of the
objectives of delivering the rush order and maximizing
overall plant profit. The proposed objective function allows
the flexibility for modeling different weighted instances of
the two targets so that a best-possible decision can be
determined. Take an additional order of 60 units of P1 in
Example 1 as an example. Two cases that correspond to
different forms of the objective function of maximizing
the total profit are then considered. (1) Case 1: Values of
priority(s) = 1 for all states, priority0(s) = 0 for P1 and 1
for all other states, and penalty = 100. For this case, this
objective function balances both the maximization of the
plant profit and the attempted maximization of production
of P1. (2) Case 2: Values of priority(s) = 0 for all states, pri-

ority0(s) = 1 for P1 and 0 for all other states, and pen-

alty = 100. This means that the first term in the objective
function is zero and the objective reduces to maximizing
the production of P1 only.

The total P1 production and scaled values of the total
plant profit versus time of rush order arrival for both case
1 and case 2 are shown in Fig. 5. The Results show that (1)
both cases result in almost the same production for P1. (2)
The plant profit determined in case 1 is significantly higher
than that obtained by case 2. This is due to the fact that
case 2 maximizes only the production of P1 without consid-

ering any possible profit increase due to the production of
P2. Thus, we can conclude that the use of the objective
function as in case 1 that has priorities balanced equally
toward profit maximization and maximum P1 production
results in better total profit and can be directed toward
complete satisfaction of the rush order by increasing the
priority of the corresponding product.

5. Conclusions

In this paper, a novel formulation for the short-term
scheduling of multiproduct batch plants under demand
uncertainty is presented, then is solved by an improved
genetic algorithm. The proposed approach results in an
efficient utilization of the plant capability as it allows the
optimal selection among all rescheduling alternatives in a
systematic way without the use of any heuristics. More-
over, the objective function can not only maximize the total
profit of the plant and minimize the makespan but also
allow the flexibility for modeling different weighted
instances of the two targets so that the best-possible deci-
sion can be determined.

The Results obtained from the two examples have been
used to illustrate the applicability and efficiency of the pro-
posed formulation and algorithm. The Results show that
(1) The proposed model predicts a nonuniform increase
in the minimum makespan depending on the time the rush
order arrives. When the rush order arrives before 4 h, the
makespan does not change significantly. When the rush
order arrives between 4 and 6 h, the makespan increases
sharply. (2) The objective function as in case 1 results in
better total profit and can be directed toward complete sat-
isfaction of the rush order by increasing the priority of the
corresponding product.
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